基于均衡KNN算法的电力负荷短期并行预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11930/j.issn.1004-9649.201708078

基于均衡KNN算法的电力负荷短期并行预测

引用
为提高电力负荷预测精度,应对海量、高维数据带来的单机计算资源不足的问题,提出一种基于均衡KNN算法的短期电力负荷并行预测方法.针对电力负荷数据特征,采用K均值聚类算法进行电力负荷场景划分;为提高场景划分精度,采用反熵权法量化负荷特征的权重系数;针对不均衡的负荷场景,提出均衡KNN算法对待预测负荷进行精确的场景归类;采用BP神经网络算法对海量历史数据进行负荷预测模型的分场景训练与预测;采用Apache Spark架构对提出的模型进行并行化编程,提高其处理海量、高维数据的能力.选取某小区居民用电数据进行算例分析,在30节点云计算集群上进行测试验证,结果表明基于该模型的负荷预测精度与执行时间均优于传统预测算法,且提出的算法具有优异的并行性能.

负荷预测、负荷场景、K均值、均衡KNN、BP神经网络、ApacheSpark

51

TM715(输配电工程、电力网及电力系统)

国家电网公司总部科技项目资助52130417002C

2018-11-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

88-94,102

相关文献
评论
暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

51

2018,51(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn