基于主成分分析与神经网络复合模型的汽轮机排汽焓计算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11930/j.issn.1004-9649.201702049

基于主成分分析与神经网络复合模型的汽轮机排汽焓计算

引用
以某300 MW汽轮机为例,建立了基于主成分分析与神经网络复合模型的汽轮机排汽焓计算模型.首先分析了主成分分析和人工神经网络计算原理.然后采集了影响汽轮机排汽焓的各个主要参数的历史数据.并对采集到的数据进行了数据预处理,对剔除坏点后的历史数据做主成分分析,得到了累计贡献值大于99.95%的4个主要成分.并以这4个主要成分作为BP神经网络的输入变量,汽轮机排汽焓作为输出变量,建立基于主成分分析与神经网络复合模型的汽轮机排汽焓计算模型,通过对模型的训练和验证,得到了汽轮机排汽焓计算模型,便于在线监测中进行实时调用.研究结果表明:主成分分析能够确定合理的BP神经网络输入变家个数.提高训练精度和训练速度;主成分分析与神经网络复合模型对排汽焓的计算精度符合工程要求;排汽焓在各个负荷工况下波动不大.

汽轮机、排汽焓、主成分分析、神经网络

51

TM621(发电、发电厂)

2018-04-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

126-132

相关文献
评论
暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

51

2018,51(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn