基于预测信息二维坐标动态划分的风电集群功率超短期预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13334/j.0258-8013.pcsee.212388

基于预测信息二维坐标动态划分的风电集群功率超短期预测

引用
风电集群的大规模并入电网对功率预测的准确度提出了更高的要求.为能充分利用预测功率信息和数值天气预报(numerical weather prediction,NWP)信息,该文提出一种基于功率变化趋势和风速变化波动的二维坐标的风电场动态分群方法.将4h时间尺度的预测过程分成4个等长时间尺度的循环过程,在每次1h的循环过程中应用平衡迭代规约和聚类(balanced iterative reducing and clustering using hierarchies,BIRCH)对各场站的二维坐标聚类,完成对集群的划分,根据划分结果构建训练集,通过门控循环单元(gate recurrent unit,GRU)模型完成各子集群的功率预测,重复这一过程直至完成4h的超短期功率预测.算例结果表明,所提方法的预测精度相比静态划分提升1.8%,相比统计升尺度提升4.31%,可有效提高风电集群的功率超短期预测准确度.

风电功率预测、功率变化趋势、风速变化波动、集群动态划分、深度学习

42

TM73(输配电工程、电力网及电力系统)

国家重点研发计划2018YFB0904200

2023-02-09(万方平台首次上网日期,不代表论文的发表时间)

共11页

8854-8863,中插5

相关文献
评论
暂无封面信息
查看本期封面目录

中国电机工程学报

0258-8013

11-2107/TM

42

2022,42(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn