一种新的稀疏分类融合方法及其在机车轴承故障诊断中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13334/j.0258-8013.pcsee.192035

一种新的稀疏分类融合方法及其在机车轴承故障诊断中的应用

引用
针对高速列车轴箱轴承的健康状态监测中存在的故障数据不充分,单个分类器故障识别精度不高的问题,提出基于K-SVD重构残差的稀疏分类融合诊断方法.该方法利用K-SVD分解后的重构误差表征训练样本在每种故障模式下的分类趋势,根据样本的重构残差分布估计各K-SVD分类器的混淆矩阵并计算相应的可靠性矩阵,再结合D-S证据融合理论对测试样本在各K-SVD分类器下的故障识别结果进行融合分析,得到最终诊断结果.该方法在动车轴箱轴承故障试验中的应用结果表明,提出的新的稀疏分类融合方法较单一特征分类器、传统的投票融合法的识别精度有显著提高,即使是在小样本情况下其容错性、稳定性也较好,解决了高速列车轴箱轴承故障诊断中单传感器检测精度低、单一域特征信息不足即证据冲突情况下分类信息难以有效融合的问题.

轴箱轴承、K-SVD稀疏分类器、混淆矩阵、融合诊断

40

TP18;TH133.3(自动化基础理论)

国家自然科学基金;国家自然科学基金

2020-09-17(万方平台首次上网日期,不代表论文的发表时间)

共8页

5675-5681,中插27

相关文献
评论
暂无封面信息
查看本期封面目录

中国电机工程学报

0258-8013

11-2107/TM

40

2020,40(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn