基于PCA-LSTM模型的风电机网相互作用预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13334/j.0258-8013.pcsee.181221

基于PCA-LSTM模型的风电机网相互作用预测

引用
随着风电在电力系统中渗透率不断提高,风电机组接入电网带来的机网相互作用问题已严重影响电网安全和电能质量,对风电机网相互作用进行研究意义重大.在TensorFlow深度学习框架下,提出一种基于长短期记忆(long short-term memory,LSTM)网络的风电机网相互作用预测模型.首先,通过主成分分析法(principal component analysis,PCA)对多变量时间序列做筛选,降低数据维度.其次,用LSTM网络对选出的风电机网相互作用关联因素序列和风电实际输出序列之间的非线性关系进行建模,并通过实例与其他预测方法对比证明其具有更高的精确度和适用性.最后,对机网相互作用观测对象的预测数据进行Prony分析,通过实测数据验证采用观测对象预测值分析机网相互作用的可行性和有效性.

风电机网相互作用、长短期记忆网络、主成分分析、深度学习、振荡

39

TM711(输配电工程、电力网及电力系统)

国家自然科学基金;国家电网有限公司总部科技项目

2019-08-14(万方平台首次上网日期,不代表论文的发表时间)

共11页

4070-4080

相关文献
评论
暂无封面信息
查看本期封面目录

中国电机工程学报

0258-8013

11-2107/TM

39

2019,39(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn