基于FFT和神经网络的非整数次谐波分析改进算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:0258-8013.2008.04.017

基于FFT和神经网络的非整数次谐波分析改进算法

引用
运用神经网络模型进行整数次谐波检测可达到较高的检测精度,但该种线性神经元模型不适合非整数次谐波的检测.为精确检测非整数次谐波,该文提出一种改进的线性人工神经元模型,并将加汉宁窗的FFT算法和改进的线性人工神经元模型结合起来,提出一种改进的非整数次谐波分析算法.首先,对采样信号用加汉宁窗的FFT算法进行预处理,得到谐波个数和精度不高的谐波次数;其次,根据谐波个数设定神经元的个数,根据预处理后得到的谐波次数设定神经网络谐波次数迭代的初始值;为了提高迭代速度,提出了谐波次数迭代步长自适应调整的算法.最后对改进后的人工神经网络进行训练,实现了非整数次谐波的精确检测.仿真实例表明,该方法能将频率相近的非整数次谐波分离,可有效提高谐波参数的检测精度和速度.

电力系统、快速傅里叶变换、人工神经网络、汉宁窗、谐波分析

28

TM935

教育部高等学校优秀青年教师教学科研奖励计划教育部人事司2001-182

2008-05-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

102-108

相关文献
评论
暂无封面信息
查看本期封面目录

中国电机工程学报

0258-8013

11-2107/TM

28

2008,28(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn