10.13419/j.cnki.aids.2017.07.19
几种预测方法在甘肃省梅毒发病率预测中的应用
目的 比较几种传统模型及机器学习方法,在甘肃省预测梅毒发病率的效果,并对未来发病率进行预测,为制定控制措施提供依据.方法 应用MATLAB 2014a软件,对甘肃省2004-2015年梅毒发病率数据分别建立多项式回归、平滑样条插值、灰色系统GM(1,1)、自回归整合移动平均(ARIMA)、人工神经网络(ANN)和支持向量机(SVR)等数学模型,然后根据2016年实际发病率数据来检验预测效果以选择最佳预测模型,最后使用该模型预测2017-2020年发病率.结果 构建的一次多项式、二次多项式、平滑样条方法、GM(1,1)、ARIMA、ANN和SVR模型,拟合2004-2015年梅毒发病率平均相对误差分别为20.04%、22.44%、8.10%、24.89%、11.00%、17.61%和24.72%,以平滑样条最小.7种模型预测2016年梅毒发病率,以ARIMA模型最佳,使用该模型预测2017-2020年发病率分别为19.11/10万、18.21/10万、18.57/10万和19.94/10万.结论 不同数学模型拟合和预测效果不同,应根据实际数据选择合适的模型;ARIMA模型预测甘肃省近年梅毒发病率性能较好,预测2017-2020年发病率较为稳定.
梅毒、发病率、数学模型、预测
23
R759(皮肤病学与性病学)
甘肃省卫生行业科研计划资助项目GSWSKY-201422
2017-09-01(万方平台首次上网日期,不代表论文的发表时间)
共4页
647-650