HHT和SVM在机械安全评估与预测中的应用研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16265/j.cnki.issn1003-3033.2017.02.011

HHT和SVM在机械安全评估与预测中的应用研究

引用
为提高大型复杂机械设备运行的安全性和可靠性,在监测机械设备振动状态的基础上,采用希尔伯特-黄变换(HHT)技术处理信号,将获得的振动频域能量值作为机械设备性能退化的特征量;进而采用网格搜索法(GS)和交叉验证法(CV),优化支持向量机模型(SVM)参数,以提高退化特征量预测精度;并据此建立一种状态空间划分法,用以评估并预测机械设备安全状态.最后,用所建立的方法评估并预测无刷直流电机振动状态和相应的安全状态,预测结果的相对误差仅为1.17%.

机械设备、振动监测、希尔伯特-黄变换(HHT)、支持向量机(SVM)、安全评估与预测

27

X913.4;TP206+.3(安全科学基础理论)

中央高校基本科研业务费专项资金2014ZC51031;航空科学基金资助2015ZD51044

2017-05-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

58-63

相关文献
评论
暂无封面信息
查看本期封面目录

中国安全科学学报

1003-3033

11-2865/X

27

2017,27(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn