基于双重注意力机制的异步电机故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2023.21.013

基于双重注意力机制的异步电机故障诊断方法

引用
多源数据融合的深度学习模型中,通常采用等比重的方式将不同类型信号的特征映射至融合层.然而,该过程忽略了非同源信号特征对最终识别效果贡献程度不一致的问题.为此,提出了一种基于双重注意力机制的深度学习模型.该模型首先采用通道注意力模块抑制同源信号内无关分量的影响,其次利用多源数据注意力模块自适应分配非同源信号特征的权重,然后对重新赋权的特征进行融合,最后利用分类器实现模式分类.将所提方法应用于异步电机故障诊断,结果表明,该方法平均识别准确率为99.74%,其诊断效果优于现有方法.

注意力机制、特征融合、深度学习、异步电机、故障诊断

42

TP391.4(计算技术、计算机技术)

国家自然科学基金51875105

2023-11-17(万方平台首次上网日期,不代表论文的发表时间)

共9页

110-118

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

42

2023,42(21)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn