基于AMCNN-BiGRU的滚动轴承故障诊断方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2023.18.009

基于AMCNN-BiGRU的滚动轴承故障诊断方法研究

引用
为克服传统滚动轴承故障诊断方法需要人工提取特征的缺点,提出一种基于注意力模块的卷积神经网络-双向门控循环单元的滚动轴承故障诊断方法.该方法利用下采样后的原始振动信号作为输入,通过具有两种不同核大小的并行卷积块从采样后的数据中提取特征,并使用注意力模块对提取的特征进行加权融合处理,最后将具有不同权重的特征输入到双向门控循环单元进行故障分类,从而实现端到端的诊断.为了理解所提出模型的诊断过程,对所学习的特征进行可视化,分析发现模型可以有效映射不同类型的故障.经试验表明,该模型使用下采样后的原始数据有效缩短了网络的训练时间,同时还可以保持100%的诊断准确率.

卷积神经网络、门控循环单元、注意力机制、轴承故障诊断、可视化

42

TH212;TH213.3(起重机械与运输机械)

国家自然科学基金;教育部新一代信息技术创新项目

2023-10-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

71-80

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

42

2023,42(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn