基于MTF-CNN的轴承故障诊断研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2023.02.015

基于MTF-CNN的轴承故障诊断研究

引用
轴承故障诊断对保证机械设备的安全十分重要.近年来,数据驱动的故障诊断方法得到了研究者的关注.与传统的依赖于专家经验的故障特征提取方法不同,深度学习方法可以实现端到端自动故障特征提取与分类.针对一维信号作为卷积神经网络(convolutional neural network,CNN)输入时无法充分利用数据间的相关信息的问题,提出一种基于MTF-CNN的轴承故障诊断方法.利用马尔可夫变迁场(Markov transition field,MTF)对采集到的振动信号进行编码,根据数据之间的转移概率得到不同时间间隔内的数据相关性并生成相应特征图,之后将其输入卷积神经网络完成特征的提取并进行故障分类.采用凯斯西储大学轴承数据对模型进行验证,试验结果表明该模型达到99.8%以上的故障诊断准确率,与其他图像编码方式相比获得了较好的泛化性能.

故障诊断、深度学习、马尔可夫变迁场(MTF)、卷积神经网络(CNN)

42

TH133.33

国家重点研发计划;国家自然科学基金;国家自然科学基金;石家庄铁道大学研究生创新资助项目

2023-02-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

126-131

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

42

2023,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn