基于SSWPT边际谱特征信息提取的齿轮故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2022.14.007

基于SSWPT边际谱特征信息提取的齿轮故障诊断

引用
在噪声的影响下,齿轮的故障信息不易被识别.同步压缩小波包变换(synchrosqueezed wave packet trans-form,SSWPT)作为一种新的时频分析方法,具有良好的抗噪声能力.在其基础上提出基于SSWPT边际谱特征信息提取的齿轮故障诊断方法.首先,对故障齿轮的振动信号进行SSWPT得到信号的能量矩阵,并对能量矩阵进行积分变换求取齿轮振动信号的边际谱;然后,根据边际谱提取啮合频率及其倍频,并选择对应的啮合调制频带对能量矩阵运用同步压缩小波包逆变换(synchrosqueezed wave packet inverse transformation,ISSWPT)进行信号重构;最后,对重构信号进行解调分析,从而可以有效提取齿轮故障特征频率.仿真及试验分析结果表明,该方法可以准确地提取齿轮故障特征信息,且分析效果优于包络谱和基于快速谱峭度的共振解调方法,为齿轮的故障特征提取提供一种有效的方法.

同步压缩小波包变换(SSWPT)、边际谱、齿轮、故障诊断

41

TH132.4

河北省自然科学基金E2020502031

2022-08-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

50-57

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

41

2022,41(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn