基于多物理场信号相关分析与支持向量机的离心泵故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2022.06.026

基于多物理场信号相关分析与支持向量机的离心泵故障诊断方法

引用
为解决传统离心泵故障诊断仅使用单一振动信号而无法综合利用多物理场相关性信息等问题,该研究提出一种基于多物理场信号相关分析与支持向量机(SVM)相结合的故障诊断方法.首先对采集到的离心泵在不同状态下的多物理场信号进行归一化操作;其次计算任意两个归一化后的多物理场信号的相关度并组成相关度矩阵;最后,以相关度矩阵作为特征使用SVM进行诊断.为验证该方法的有效性,使用离心泵故障数据对所提方法进行了验证.结果表明,相比仅使用单一信号的故障诊断方法,该方法能充分提取离心泵多物理场相关度信息,特征提取更充分,有效提高离心泵故障诊断正确率.

多物理场、相关分析、离心泵故障诊断、支持向量机(SVM)

41

TH212;TH213.3(起重机械与运输机械)

2022-04-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

206-212

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

41

2022,41(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn