基于BiLSTM与注意力机制的剩余使用寿命预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2022.06.007

基于BiLSTM与注意力机制的剩余使用寿命预测研究

引用
剩余使用寿命(remaining useful life,RUL)预测在现代工业中占有重要地位,如何提高剩余使用寿命预测的准确性已经成为当今研究的热点.传统的剩余使用寿命预测方式是采用基于模型的方法进行预测,需要人工提取特征,不能自动地学习特征信息,无法获得原始数据与剩余使用寿命之间的复杂映射关系.该研究提出一种基于双向长短期记忆网络(bi-directional long short term memory,BiLSTM)与注意力机制的剩余使用寿命预测模型,与已有的剩余使用寿命预测方法不同之处在于:直接将获取的原始时间序列输入到BiLSTM神经网络中,通过BiLSTM自动地提取设备状态特征信息;然后利用注意力机制对特征分配不同的权重,这样可以更准确地提取设备的健康状态信息.进行了发动机和轴承剩余使用寿命预测试验,并与长短期记忆网络(long short-term memory,LSTM)模型和BiLSTM剩余使用寿命预测模型进行比较,试验结果表明提出的BiLSTM与注意力机制相结合的模型能够更准确地进行剩余使用寿命预测,具有应用价值.

双向长短期记忆网络(BiLSTM)、注意力机制、剩余使用寿命(RUL)预测、深度学习、神经网络

41

TH212;TH213.3(起重机械与运输机械)

国家自然科学基金;国家自然科学基金;石家庄铁道大学研究生创新资助项目

2022-04-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

44-50,196

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

41

2022,41(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn