自适应粒子群优化的HMM故障诊断方法及应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2021.20.033

自适应粒子群优化的HMM故障诊断方法及应用

引用
针对传统隐马尔科夫模型(hidden Markov model,HMM)解决学习训练过程中参数容易局部收敛的问题,采用一种自适应粒子群算法对HMM模型进行优化改进.在基础粒子群算法中加入惯性权重因子,并根据算法迭代结果对算法各因子大小进行动态控制,增强该算法的全局搜索能力.改进后的粒子群算法融入HMM模型训练过程参数学习的优化过程,能够提高HMM的训练精度.将其应用到油机电站的故障诊断当中,通过对其实测振动数据进行分析,与标准算法相比,对油机处于正常、供气不足、进气门间隙异常状态的分类准确率都有所提升,整体诊断精度达到97.3%.结果 表明,基于自适应粒子群优化的HMM故障诊断方法能够有效解决传统模型的局部收敛问题.

粒子群优化;自适应方法;隐马尔科夫模型;故障诊断

40

TH17

军队科研项目

2021-11-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

264-270

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

40

2021,40(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn