基于补偿距离评估和一维卷积神经网络的离心泵故障快速智能识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2021.10.006

基于补偿距离评估和一维卷积神经网络的离心泵故障快速智能识别方法

引用
一维卷积神经网络可适用于振动等一维信号的识别与分类,但将其直接应用于机械故障诊断时小样本训练条件下的识别准确率与识别速度是其亟需解决的问题.针对上述问题,提出一种基于补偿距离评估和一维卷积神经网络的离心泵故障快速智能识别方法.基于离心泵振动分析与故障诊断理论,通过提取时域、频域、能量及熵特征来构造混合域全特征集,充分挖掘训练样本中的故障信息,提高单个训练样本的利用率,使故障识别模型具备小样本训练的能力;通过补偿距离评估方法对全特征集进行降维优化,在有效保留故障特征信息的同时显著降低特征维度,使特征构造及故障识别模型具备快速计算的能力;通过训练样本的降维后特征进行一维卷积神经网络的训练,进而构建故障智能识别模型,保存模型并将其用于离心泵故障分析.经某石化离心泵的抽空和滚动轴承损伤两个故障案例验证,该方法在小样本训练条件下识别准确率达到98%以上,单组数据识别时间小于3 s,可满足工程中离心泵故障实时智能识别的需求.

离心泵、故障诊断、振动、卷积神经网络(CNN)、小样本

40

TP277;TH32(自动化技术及设备)

博士后创新人才支持计划;NSFC-辽宁联合基金;中央高校基本科研业务费专项

2021-06-21(万方平台首次上网日期,不代表论文的发表时间)

共9页

41-49

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

40

2021,40(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn