10.13465/j.cnki.jvs.2021.06.025
一种基于遗传算法的VMD参数优化轴承故障诊断新方法
为准确提取轴承故障特征信息,提出以峭度指标和包络熵为综合目标函数的变分模态分解(variational mode decomposition,VMD)参数优化方法,并改进了诊断流程实现了无需指定参数优化范围的自适应参数优化算法.通过遗传算法对综合目标函数最小值进行搜索,以确定模态分量个数及惩罚参数的最佳组合.原始故障信号经最佳参数组合下的VMD方法分解为若干个本征模态函数,选择最小综合目标函数值对应的模态分量进行包络解调分析,进而通过模态分量的包络谱判断轴承故障类型.通过实测故障信号分析表明,该方法能够从噪声干扰中有效提取到早期故障信号的微弱故障特征,实现了轴承故障类型的准确判定,验证了该方法的有效性.
变分模态分解(VMD)、遗传算法、滚动轴承、早期故障诊断
40
TH17
国家自然科学基金;甘肃省自然科学基金;兰州交通大学青年科学基金
2021-04-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
184-189