基于无参数经验小波变换的风电齿轮箱故障特征提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2020.08.014

基于无参数经验小波变换的风电齿轮箱故障特征提取

引用
风电机组通常以集群规模化运行,机组结构复杂、振动测点多,所产生的振动数据量大,仅靠人工进行故障诊断具有较大挑战.提出基于无参数经验小波变换的风电齿轮箱故障特征提取方法,运用尺度空间方法和经验法则对振动信号的傅里叶谱进行自动分割,获得不同的滤波频带,据此设计一系列经验小波滤波器对信号进行分解和重构,获得不同频带下的经验模式,进一步采用裕度因子对分解后的经验模式进行排序,选取裕度因子最大的经验模式作为故障敏感模式;该方法能在无需预设任何参数的情况下对振动信号进行分解与故障特征提取,具有自适应性.风电试验台和实测风电齿轮箱故障案例验证了方法的有效性.

无参数、经验小波变换、裕度因子、自适应、故障特征提取

39

TP183(自动化基础理论)

国家自然科学基金;鲁能集团有限公司科技项目

2020-06-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

99-105,117

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

39

2020,39(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn