结合近似贝叶斯计算和改进群体蒙特卡洛抽样的结构损伤识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2020.05.019

结合近似贝叶斯计算和改进群体蒙特卡洛抽样的结构损伤识别

引用
为避免陷入低概率区抽样并提高抽样效率,改进了群体蒙特卡洛(PMC)抽样算法,再结合近似贝叶斯计算(ABC)和随机响应面(SRS)提出一种概率损伤识别方法.首先将ABC和改进PMC算法进行嵌套,利用每个迭代步的样本方差来搅动粒子群和求取自适应权重系数,再构造衡量仿真和实测样本间相似度的误差函数,用于替代似然函数;然后使用SRS建立结构随机响应的显式表达式,大幅提高响应统计特征值的计算效率;最后将求得的参数后验概率分布统计特征值作为损伤指标,根据损伤前后指标值的变化来判断损伤位置和程度.对试验钢筋混凝土梁的单、多工况损伤进行了识别,验证了所提出方法在保证参数后验分布估计精度的条件下,可以有效提高贝叶斯推断过程的计算效率.

概率损伤识别、近似贝叶斯计算、改进PMC抽样、随机响应面、参数后验概率分布

39

O327;TU311(振动理论)

国家自然科学基金面上项目;福州大学“旗山学者”奖励支持计划

2020-04-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

143-149

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

39

2020,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn