基于VMD和改进多分类马田系统的滚动轴承故障智能诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2020.02.005

基于VMD和改进多分类马田系统的滚动轴承故障智能诊断

引用
为了有效提取滚动轴承的故障信号,选择合适的智能分类器识别故障状态,提出基于变分模态分解及多重马氏距离法的多分类马田系统的故障智能诊断系统.通过变分模态分解将振动信号分解为多个本征模函数并提取相关特征;并采用了多重马氏距离法的马田系统,以特征子集代替特征参与分类器的构建,以解决特征参数众多的问题;通过正交表和信噪比,筛选出各状态的敏感模态分量,并提出多分类马田系统,用于多类故障智能识别;将其应用于滚动轴承故障数据中,验证算法的有效性,并与其他算法对比分析.结果 表明,基于变分模态分解及改进的多分类马田系统算法能简化诊断系统、训练耗时少,识别准确率高,是一种更为有效的故障智能诊断方法.

滚动轴承、智能诊断、变分模态分解(VMD)、多重马氏距离(MMD)、多分类马田系统(MMTS)

39

TP181(自动化基础理论)

国家自然科学基金71271114

2020-04-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

32-39

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

39

2020,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn