10.13465/j.cnki.jvs.2019.07.029
Galerkin法求解弹性边界条件下圆板的流-固耦合振动特性
用干圆板振型作为基函数将圆板位移展开为级数形式,采用速度势函数描述流体运动,研究了弹性边界条件下圆板的流-固耦合振动特性.根据圆板的平衡微分方程和流-固耦合界面的速度连续条件,结合Galerkin法和Fourier-Bessel级数展开法,建立了系统的控制方程.求解了流体中圆板的固有振动特性,并将计算结果与数值仿真结果进行对比,验证了方法的正确性.通过改变弹簧刚度,分析了几种常见边界条件下圆板的振动特性,结果表明,自由和导向边界圆板的振型受流体的影响较小.研究了流体深度对圆板振动特性的影响,结果表明,当深度大于1.5倍圆板半径时,流体深度的改变对于圆板自由振动的影响可以忽略.
弹性边界条件、圆板、流-固耦合、Galerkin法、Fourier-Bessel级数
38
O327(振动理论)
国家自然科学基金51779098
2019-07-08(万方平台首次上网日期,不代表论文的发表时间)
共8页
204-211