基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2019.07.019

基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测研究

引用
针对球磨机磨矿过程中负荷难以检测和不能准确判断负荷状态的问题,提出了一种基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测方法,用完整集成经验分解算法(CEEMDAN)对不同负荷的磨机振动信号进行分解,由相关系数法选取敏感模态分量重构信号,利用逆向云发生器计算重构信号的云模型特征熵作为信号的特征参数,运用正向云发生器生成云模型特征向量的云滴图,结果表明,欠负荷、正常负荷、过负荷之间的熵值差异很大,可以较好地区分和识别磨机负荷状态;将云模型特征向量作为最小二乘支持向量机(LSSVM)的输入,料球比、充填率为输出,建立磨机负荷预测模型;通过磨矿实验验证了该方法的有效性,模型能够准确预测磨机负荷状态.

磨机负荷、CEEMDAN、云模型特征熵、最小二乘支持向量机

38

国家自然科学基金51464017;江西省教育厅科技重点GJJ150618

2019-07-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

128-133

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

38

2019,38(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn