FVS-MSVM方法在机器人建模与辨识中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2018.20.011

FVS-MSVM方法在机器人建模与辨识中的应用

引用
针对强耦合、高度非线性的机器人辨识问题,提出一种基于特征向量选择(FVS)的多输出支持向量机(MSVM)方法.该方法由核技术对映射至特征空间的输入数据,按照几何上的考虑提取相关的数据向量,形成特征空间的一个基底,所选择的数据向量定义为特征子空间.将数据投影至该子空间上,基于MSVM方法建立辨识模型,MSVM方法保持了在ε不敏感损失函数下具有紧凑与稀疏解的优点.为验证FVS-MSVM方法的有效性,将其应用于液压驱动机器人的油压辨识、PUMA 560工业机器人逆向运动学辨识、SARCOS仿生机器人逆向动力学建模中.在同等条件下,将FVS-MSVM方法与SVM、KPCA-MSVM及FVS-线性回归(LR)等方法进行比较.实验结果表明,FVS-MSVM方法不仅能够减小计算复杂度,而且具有很好的建模与辨识精度,模型的推广性好.

特征向量、数据选择、支持向量机、机器人、建模、辨识

37

TH212;TH213.3(起重机械与运输机械)

国家自然科学基金51467008

2019-01-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

67-74

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

37

2018,37(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn