基于排列熵与IFOA-RVM的汽轮机转子故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2018.05.012

基于排列熵与IFOA-RVM的汽轮机转子故障诊断

引用
为了提高汽轮机转子故障诊断的识别准确率和效率,提出基于排列熵与改进的果蝇算法(IFOA)优化相关向量机(RVM)的汽轮机转子故障诊断方法.将实验数据进行自适应完备的集合经验模态分解(CEEMDAN),并选取故障特征敏感的IMF分量计算排列熵,以此构造特征样本集,进而建立“二叉树”IFOA-RVM故障分类器对特征集进行分类,其中IFOA通过两个阶段来定义果蝇群体的搜索范围来提高搜索效率,同时避免RVM核函数陷入局部最优.通过ZT-3汽轮机转子模拟试验台获得的故障数据进行实验研究,结果表明与模糊熵对比,排列熵获得的特征样本集的聚类效果明显;IFOA-RVM分类器在故障识别准确率和效率上优于FOA-RVM等其它分类器;证明了基于排列熵与IFOA-RVM汽轮机转子故障诊断方法的有效性和可行性.

IFOA、RVM、汽轮机转子、故障诊断

37

TK267(蒸汽动力工程)

国家自然科学基金51576036;吉林省科技发展计划项目20100506

2018-07-30(万方平台首次上网日期,不代表论文的发表时间)

共7页

79-84,113

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

37

2018,37(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn