基于变分模态分解和排列熵的滚动轴承故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2017.22.004

基于变分模态分解和排列熵的滚动轴承故障诊断

引用
滚动轴承早期故障信号特征微弱且难以提取,为了从轴承振动信号中提取特征参数用于轴承故障诊断和识别,提出基于变分模态分解(Variational Mode Decomposition,VMD)和排列熵(Permutation Entropy,PE)的信号特征提取方法,并采用支持向量机(Support Vector Machine,SVM)进行故障识别.对轴承振动信号进行变分模态分解,得到不同尺度的本征模态函数;计算各本征模态函数的排列熵,组成多尺度的复杂性度量特征向量;将高维特征向量输入基于支持向量基建立的分类器进行故障识别分类.通过滚动轴承实验数据分析了算法中参数选取问题,将该方法应用于滚动轴承实验数据,并与集合经验模态分解和小波包分解进行对比,分析结果表明,基于变分模态分解和排列熵的诊断方法有更高的诊断准确率,能够有效实现滚动轴承的故障诊断.

变分模态分解、排列熵、支持向量机、滚动轴承、故障诊断

36

TH212;TH213.3(起重机械与运输机械)

国家自然科学基金51507098;上海绿色能源并网工程技术研究中心13DZ2251900;上海市科委重点科技攻关项目14DZ1200905;上海市电站自动化技术重点实验室项目13DZ2273800

2018-04-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

22-28

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

36

2017,36(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn