基于STUKF的非线性结构系统时变参数识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2017.07.026

基于STUKF的非线性结构系统时变参数识别

引用
针对非线性结构系统时变参数识别问题,传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)难以有效跟踪结构参数的变化.将强跟踪滤波原理引入无迹卡尔曼滤波,提出一种强跟踪无迹卡尔曼滤波(Strong Tracking Un-scented Kalman Filter,STUKF)算法,以识别结构参数的变化.在UKF量测更新后,依据输出残差计算渐消因子矩阵;引入两个渐消因子矩阵实时调整状态预测协方差矩阵,使残差序列强行正交,快速修正结构参数估计值,使STUKF具有对结构参数变化的跟踪能力;此外,为节省计算时间,调整状态预测协方差矩阵后不再进行sigma点采样,保证了算法的高效性.数值分析结果表明,该算法能有效识别非线性结构系统的参数及其变化,并具有较强的抗噪性.

强跟踪滤波、无迹卡尔曼滤波、非线性结构系统、时变、参数识别

36

N945.14;TB122(系统科学)

国家自然科学基金51578274,51568041;教育部长江学者创新团队项目IRT13068;甘肃省青年科技基金计划2014GS03277

2017-09-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

171-176,198

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

36

2017,36(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn