基于QGA优化广义S变换的滚动轴承故障特征提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2017.05.017

基于QGA优化广义S变换的滚动轴承故障特征提取

引用
考虑到实际工程环境中噪声对故障特征提取的影响,提出了基于量子遗传算法(QGA)优化广义S变换的滚动轴承故障特征提取方法.该方法以时频分布集中程度为评价标准,首先采用量子遗传算法自适应地选取广义S变换中最优窗口控制参数,然后提取信号变换后复时频矩阵的模向量作为滚动轴承故障特征向量.利用该方法提取的滚动轴承故障特征与其它故障特征进行故障识别对比研究,实验结果表明该方法能够更准确地提取出故障特征,验证了方法的优越性.此外,对不同噪声强度背景下的滚动轴承振动信号进行故障特征提取,诊断结果进一步显示所提方法具有良好的抗噪性和健壮性.

广义S变换、量子遗传算法、滚动轴承、故障诊断、特征提取

36

TH212;TH213.3(起重机械与运输机械)

安徽省高校自然科学研究重点项目KJ2016A529;滁州学院规划研究项目2014GH20;滁州学院2016年科研启动基金2016QD08

2017-05-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

108-113,119

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

36

2017,36(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn