基于MFCC和SVM的车窗电机异常噪声辨识方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2017.05.016

基于MFCC和SVM的车窗电机异常噪声辨识方法研究

引用
为提高车窗电机异常噪声特征提取的有效性及分类识别的准确性,提出一种以优化的梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)为特征值,以支持向量机(Support Vector Machine,SVM)为噪声辨识模型的电机异常噪声辨识方法.在MFCC提取方法基础上,针对频谱泄漏,用Hanning自卷积窗代替Hanning窗,获得优化的MFCC,并将其作为特征值输入到SVM进行异常噪声辨识.为提高SVM判别准确率,采用人工蜂群算法实现SVM参数选择优化.实验结果表明,该方法能够有效判别电机是否存在异响,准确率达到91%.

车窗电机噪声、梅尔倒谱系数、支持向量机、汉宁自卷积窗、人工蜂群算法

36

TP274;TM306(自动化技术及设备)

2017-05-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

102-107

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

36

2017,36(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn