基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2015.09.027

基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测

引用
为更好地表征滚动轴承性能退化趋势,提出基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测新方法。提取振动信号的多域特征组成高维特征集,利用局部保持投影算法(LPP)对多域高维特征集进行维数约简,消除各特征指标之间的冗余、冲突等问题。将维数约简后的特征向量作为最小二乘支持向量机的输入,建立退化趋势预测模型,完成退化趋势预测。运用实测的滚动轴承全寿命实验数据进行检验,结果表明该方法能获得准确的预测结果。

性能退化评估、信息熵、流形学习、最小二乘支持向量机

TP393.1;TH17(计算技术、计算机技术)

国家自然科学基金资助项目51275546,51375514;高等学校博士学科点专项科研基金资助20130191130001

2015-06-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

149-153

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

2015,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn