基于两被联件振动信号概率密度和 PCA 的螺栓松动识别方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13465/j.cnki.jvs.2015.01.013

基于两被联件振动信号概率密度和 PCA 的螺栓松动识别方法研究

引用
螺栓松动是一种常见且具有潜在危害的机械故障。考虑到螺栓松动会导致被联接件结合部动力参数发生变化,提出了一种基于两被联接件振动信号的松动识别方法。所提方法首先计算两信号的概率密度,并对概率密度曲线进行网格化处理生成概率矩阵,继而对概率矩阵进行主元分析(PCA),在合并两路信号经主元分析后所得投影矩阵之后,再次进行主元分析和投影。设计了两种识别方式,方式1首先按上述过程进行已知样本训练以得到各松动状态投影点,识别时根据所得投影点与各状态投影点间的欧式距离进行判断;方式2使用螺栓紧固状态时所得样本数据和现场实测数据直接按上述过程进行计算,并根据 PCA 特性设计了松动判别条件。试验验证表明所提方法能够准确区分不同松动状态,且识别方式2操作简便,无需故障样本,易于实际应用。

螺栓松动、概率密度、主元分析、故障诊断

PH17

国家自然科学基金资助项目51275080

2015-01-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

63-67

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

2015,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn