基于局部切空间排列与MSVM的齿轮箱故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-3835.2013.05.008

基于局部切空间排列与MSVM的齿轮箱故障诊断

引用
针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型.在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到初始低维流形结构,获取最优敏感特征向量;将该特征向量输入至多核支持向量机进行学习训练与故障辨识.局部切空间排列能克服传统降维方法的不足,多核支持向量机可实现复杂故障高精度、自动化智能诊断.通过齿轮箱故障模拟实验验证该方法的有效性.

局部切空间排列、多核学习、支持向量机、齿轮箱、故障诊断

32

TH132

国家自然科学基金项目51275546;重庆市自然科学杰出青年基金计划资助项目CQ CSTC2011jjjq0006

2013-05-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

38-42,47

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

32

2013,32(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn