面向无人艇的T-DQN智能避障算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16383/j.aas.c210080

面向无人艇的T-DQN智能避障算法研究

引用
无人艇(Unmanned surface vehicle,USV)作为一种具有广泛应用前景的无人系统,其自主决策能力尤为关键.由于水面运动环境较为开阔,传统避障决策算法难以在量化规则下自主规划最优路线,而一般强化学习方法在大范围复杂环境下难以快速收敛.针对这些问题,提出一种基于阈值的深度Q网络避障算法(Threshold deep Q network,T-DQN),在深度Q网络(Deep Q network,DQN)基础上增加长短期记忆网络(Long short-term memory,LSTM)来保存训练信息,并设定经验回放池阈值加速算法的收敛.通过在不同尺度的栅格环境中进行实验仿真,实验结果表明,T-DQN算法能快速地收敛到最优路径,其整体收敛步数相比Q-learning算法和DQN算法,分别减少 69.1%和 24.8%,引入的阈值筛选机制使整体收敛步数降低 41.1%.在Unity 3D强化学习仿真平台,验证了复杂地图场景下的避障任务完成情况,实验结果表明,该算法能实现无人艇的精细化避障和智能安全行驶.

无人艇、强化学习、智能避障、深度Q网络

49

TP242.6;TP393;TP18

2023-08-28(万方平台首次上网日期,不代表论文的发表时间)

共11页

1645-1655

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

49

2023,49(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn