视觉语言导航研究进展
视觉语言导航,即在一个未知环境中,智能体从一个起始位置出发,结合指令和周围视觉环境进行分析,并动态响应生成一系列动作,最终导航到目标位置.视觉语言导航有着广泛的应用前景,该任务近年来在多模态研究领域受到了广泛关注.不同于视觉问答和图像描述生成等传统多模态任务,视觉语言导航在多模态融合和推理方面,更具有挑战性.然而由于传统模仿学习的缺陷和数据稀缺的现象,模型面临着泛化能力不足的问题.系统地回顾了视觉语言导航的研究进展,首先对于视觉语言导航的数据集和基础模型进行简要介绍;然后全面地介绍视觉语言导航任务中的代表性模型方法,包括数据增强、搜索策略、训练方法和动作空间四个方面;最后根据不同数据集下的实验,分析比较模型的优势和不足,并对未来可能的研究方向进行了展望.
视觉语言导航、视觉语言理解、跨模态匹配、具身智能
49
TP391;TP242;V439
2023-01-16(万方平台首次上网日期,不代表论文的发表时间)
共14页
1-14