一种随机配置网络的模型与数据混合并行学习方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16383/j.aas.c190411

一种随机配置网络的模型与数据混合并行学习方法

引用
随机配置网络(Stochastic configuration networks,SCNs)在增量构建过程引入监督机制来分配隐含层参数以确保其无限逼近特性,具有易于实现、收敛速度快、泛化性能好等优点.然而,随着数据量的不断扩大,SCNs的建模任务面临一定的挑战性.为了提高神经网络算法在大数据建模中的综合性能,本文提出了一种混合并行随机配置网络(Hybrid parallel stochastic configuration networks,HPSCNs)架构,即:模型与数据混合并行的增量学习方法.所提方法由不同构建方式的左右两个SCNs模型组成,以快速准确地确定最佳隐含层节点,其中左侧采用点增量网络(PSCN),右侧采用块增量网络(BSCN);同时每个模型建立样本数据的动态分块方法,从而加快候选"节点池"的建立、降低计算量.所提方法首先通过大规模基准数据集进行了对比实验,然后应用在一个实际工业案例上,表明其有效性.

增量学习方法;随机配置网络;模型并行;数据并行;大数据建模

47

国家自然科学基金;江苏省自然科学基金;中国博士后科学基金;流程工业综合自动化国家重点实验室开放基金资助

2021-12-06(万方平台首次上网日期,不代表论文的发表时间)

共11页

2427-2437

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

47

2021,47(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn