含未知动态与扰动的非线性系统神经网络嵌入学习控制
针对带有不确定性与扰动的非线性系统的性能优化问题,提出一种基于神经网络嵌入的学习控制方法.对一类常见的Lyapunov函数导数形式,将神经网络控制器集成到某种对系统稳定的基准控制器中,其意义在于将原控制器改进为满足Lyapunov稳定的神经网络参数可调控制器,从而能够利用先进的神经网络学习技术实现控制器的在线优化.建立了跟踪误差的等效目标函数,避免了对系统输入-输出的辨识问题.建立了一种未知非线性与扰动等效值自适应方法,并依此方法设计基准控制器.以RBF (Radial basis function)反步自适应控制、基于卷积神经网络的滑模控制和深度强化学习控制为对比方法,对带有死区、饱和、三角函数等数值与物理非线性模型进行仿真分析以测试方法有效性,并针对上肢康复机器人控制问题进行虚拟实验以验证该方法的实用性.仿真与实验结果表明,该方法能在Lyapunov稳定条件下有效优化基础控制器性能,对比结果证实了该方法的实用性与先进性.
神经网络嵌入;优化控制;深度学习技术;未知非线性动态;不确定与扰动
47
国家自然科学基金;吉林重点行业与产业科技创新计划人工智能专项
2021-09-09(万方平台首次上网日期,不代表论文的发表时间)
共13页
2016-2028