基于线性化核标签融合的脑MR图像分割方法
深层脑结构的形态变化和神经退行性疾病相关,对脑MR图像中的深层脑结构分割有助于分析各结构的形态变化.多图谱融合方法利用图谱图像中的先验信息,为脑结构分割提供了一种有效的方法.大部分现有多图谱融合方法仅以灰度值作为特征,然而深层脑结构灰度分布之间重叠的部分较多,且边缘不明显.为克服上述问题,本文提出一种基于线性化核多图谱融合的脑MR图像分割方法.首先,结合纹理与灰度双重特征,形成增强特征用于更好地表达脑结构信息.其次,引人核方法,通过高维映射捕获原始空间中特征的非线性结构,增强数据间的判别性和线性相似性.最后,利用Nystrom方法,对高维核矩阵进行估计,通过特征值分解计算虚样本,并在核标签融合过程中利用虚样本替代高维样本,大大降低了核标签融合的计算复杂度.在三个公开数据集上的实验结果表明,本文方法在较少的时间消耗内,提高了分割精度.
脑结构分割、核标签融合、增强特征、Nystrom方法、虚样本
46
国家自然科学基金61871106
2021-02-25(万方平台首次上网日期,不代表论文的发表时间)
共14页
2593-2606