深度神经模糊系统算法及其回归应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16383/j.aas.c200100

深度神经模糊系统算法及其回归应用

引用
深度神经网络是人工智能的热点,可以很好处理高维大数据,却有可解释性差的不足.通过IF-THEN规则构建的模糊系统,具有可解释性强的优点,但在处理高维大数据时会遇到"维数灾难"问题.本文提出一种基于ANFIS(Adaptive net-work based fuzzy inference system)的深度神经模糊系统(Deep neural fuzzy system,DNFS)及两种基于分块和分层的启发式实现算法:DNFS1和DNFS2.通过四个面向回归应用的数据集的测试,我们发现:1)采用分块、分层学习的DNFS在准确度与可解释性上优于BP、RBF、GRNN等传统浅层神经网络算法,也优于LSTM和DBN等深度神经网络算法;2)在低维问题中,DNFS1具有一定优势;3)在面对高维问题时,DNFS2表现更为突出.本文的研究结果表明DNFS是一种新型深度学习方法,不仅可解释性好,而且能有效解决处理高维数据时模糊规则数目爆炸的问题,具有很好的发展前景.

高维大数据、深度神经模糊系统、自适应神经模糊系统、分层结构、可解释性

46

国家自然科学基金面上项目;智慧地铁福建省高校重点实验室

2021-03-03(万方平台首次上网日期,不代表论文的发表时间)

共9页

2350-2358

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

46

2020,46(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn