基于深度图及分离池化技术的场景复原及语义分类网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16383/j.aas.2018.c170439

基于深度图及分离池化技术的场景复原及语义分类网络

引用
在机器视觉感知系统中,从不完整的被遮挡的目标对象中鲁棒重建三维场景及其语义信息至关重要.目前常用方法一般将这两个功能分开处理,本文将二者结合,提出了一种基于深度图及分离池化技术的场景复原及语义分类网络,依据深度图中的RGB-D信息,完成对三维目标场景的重建与分类.首先,构建了一种CPU端到GPU端的深度卷积神经网络模型,将从传感器采样的深度图像作为输入,深度学习摄像机投影区域内的上下文目标场景信息,网络的输出为使用改进的截断式带符号距离函数(Truncated signed distance function,TSDF)编码后的体素级语义标注.然后,使用分离池化技术改进卷积神经网络的池化层粒度结构,设计带细粒度池化的语义分类损失函数,用于回馈网络的语义分类重定位.最后,为增强卷积神经网络的深度学习能力,构建了一种带有语义标注的三维目标场景数据集,以此加强本文所提网络的深度学习鲁棒性.实验结果表明,与目前较先进的网络模型对比,本文网络的重建规模扩大了2.1%,所提深度卷积网络对缺失场景的复原效果较好,同时保证了语义分类的精准度.

机器视觉感知系统、池化技术、深度图、深度学习、卷积神经网络

45

国家高技术研究发展计划863计划2014AA7031010B;国家自然科学基金51705032;吉林省教育厅"十三五" 科学技术研究项目2016345 资助

2019-12-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

2178-2186

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

45

2019,45(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn