基于生成对抗网络的漫画草稿图简化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16383/j.aas.2018.c170486

基于生成对抗网络的漫画草稿图简化

引用
在漫画绘制的过程中,按草稿绘制出线条干净的线稿是很重要的一环.现有的草图简化方法已经具有一定的线条简化能力,然而由于草图的绘制方式的多样性以及画面复杂程度的不同,这些方法适用范围有限且效果不理想.本文提出了一种新颖的草图简化方法,利用条件随机场(Conditional random field, CRF) 和最小二乘生成式对抗网络(Least squares generative adversarial networks, LSGAN) 理论搭建了深度卷积神经网络的草图简化模型,通过该网络生成器与判别器之间的零和博弈与条件约束,得到更加接近真实的简化线稿图.同时,为了训练对抗模型的草图简化能力,本文建立了包含更多绘制方式与不同内容的草图与简化线稿图对的训练数据集.实验表明,本文算法对于复杂情况下的草图,相比于目前的方法,具有更好的简化效果.

草图简化、最小二乘生成式对抗网络、深度学习、条件随机场

44

2018-06-20(万方平台首次上网日期,不代表论文的发表时间)

共15页

840-854

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

44

2018,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn