融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16383/j.aas.2017.c150667

融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用

引用
本文是在稀疏去噪自编码网络的基础上,增加梯度差约束条件改进了自编码网络的解码效果,并成功地应用于全局异常行为检测的领域.基于稀疏自编码网络异常行为的检测过程是通过训练非异常行为的视频帧数据得到自编码网络模型,将待测视频帧输入模型,根据前向传播算法得到模型的输出,计算输出与输入之间的损失值,当该值高于某个阈值时,判定该视频帧中存在异常行为.通过在标准异常行为库开展的实验表明融合梯度差信息的稀疏去噪自编码网络算法较传统的稀疏去噪自编码网络算法在全局异常行为检测中更加有效.

自编码网络、稀疏编码、梯度差信息、异常行为

43

TP3;P31

国家自然科学基金61171118,61673234,U1636124;National Natural Science Foundation of China61171118,61673234,U1636124

2017-06-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

604-610

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

43

2017,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn