一种改进的显性多核支持向量机
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3724/SP.J.1004.2014.02288

一种改进的显性多核支持向量机

引用
在支持向量机(Support vector machine, SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果。如何充分利用多个不同核函数的特点,来共同提高SVM 学习的效果,已成为一个研究热点。于是,多核学习(Multiple kernel learning, MKL)方法应运而生。最近,有的学者提出了一种简单有效的稀疏MKL 算法,即GMKL (Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定。然而, GMKL 算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息。另一方面, MultiK-MHKS 算法则考虑了利用典型关联分析(Canonical correlation analysis, CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题。本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine, IDMK-SVM)。我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性。最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势。

多核学习、分类精度、典型关联分析、支持向量机

TP1;TP3

国家自然科学基金71271211;北京市自然科学基金4132067;中国人民大学品牌计划10XNI029资助Supported by National Natural Science Foundation of China71271211;National Natural Science Foundation of Beijing4132067;Brand Plan of Renmin University of China10XNI029

2014-12-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

2288-2294

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

2014,(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn