基于WSVR和FCM聚类的实时寿命预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3724/SP.J.1004.2012.00331

基于WSVR和FCM聚类的实时寿命预测方法

引用
针对产品的性能退化轨迹呈现为非线性特性,且个体的性能退化数据为小样本的情形,为了充分利用同类产品的性能退化数据进行特定个体的实时寿命预测,从研究退化轨迹相似性的角度出发,提出一类基于小波支持向量回归机(Wavelet support vector regression,WSVR)和模糊C均值(Fuzzy c-means,FCM)聚类的实时寿命预测方法.该方法分为离线和实时两个阶段:离线阶段先采用WSVR对同类产品的性能退化数据进行规范化处理,接着对规范化数据进行FCM聚类,然后,基于WSVR建立各聚类中心的退化轨迹模型;在实时阶段,针对特定个体的历史测量数据是否规范化,分别提出两种实时退化轨迹建模和寿命预测方法—隶属度加权法和误差加权法.最后,通过两个实例分析验证了所提方法的有效性.

性能退化、小波支持向量回归机、模糊C均值聚类、实时寿命预测

38

TB114(工程基础科学)

2012-07-02(万方平台首次上网日期,不代表论文的发表时间)

331-340

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

38

2012,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn