强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16385/j.cnki.issn.1004-4523.2018.03.017

强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用

引用
从机械系统中传出的信号通常包含着不同的叠加振动成分,包括有用信息以及不可避免的背景噪声和其他频率干扰,因此波形较为复杂,并且其幅值和频率会随着时间发生变化.当背景环境较为复杂或噪声较大时,从混合信号中提取出的轴承故障特征信号更是如此.对于此类信号,模态分解算法不仅可以去除大量的高频噪声,而且还能将振动信号分解成一系列具有单一成分的模态分量,从而更好地发现振动信号的物理意义.引入一种新的轴承故障特征提取方法,首先利用变分模态分解算法先将故障信号分解为若干个成分单一的模态分量;然后利用一种新的能量算子——频率加权能量算子对含有故障频率的模态分量进行处理,得到其能量谱从而提取出轴承故障特征频率;最后以一种常见的振动筛分设备振动筛为实际案例,对其轴承故障特征进行提取,并通过对比,说明了该算法的优越性和实用性.

故障诊断、滚动轴承、振动筛、变分模态分解、频率加权能量算子

31

TH165+.3;TH133.33

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共10页

513-522

相关文献
评论
暂无封面信息
查看本期封面目录

振动工程学报

1004-4523

32-1349/TB

31

2018,31(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn