内燃机KVMD-MHD振动谱图表征与TD-2DPCA编码诊断方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16385/j.cnki.issn.1004-4523.2017.04.021

内燃机KVMD-MHD振动谱图表征与TD-2DPCA编码诊断方法研究

引用
为了直接对内燃机振动谱图像进行诊断识别,提出一种基于改进变分模态分解(VMD)、Margenau-Hill(M HD)时频分析与双向二维主成分分析(Two-directional,Two-dimensional PCA,TD-2DPCA)的内燃机振动谱图像识别诊断方法.该方法首先针对VMD分解过程中的层数选取问题,提出了一种中心频率筛选的VMD分解层数改进方法(KVMD),然后将内燃机振动信号利用KVMD分解成一组单分量模态信号,并对生成的各个单分量信号进行MHD处理后表征成振动谱图像;在此基础上,对生成的内燃机KVMD-MHD振动谱图像采用双向二维主成分分析形成编码矩阵,并采用最近邻分类器(KNNC)对上述编码矩阵直接进行模式识别,以实现内燃机振动谱图像的自动诊断.最后,将该方法应用在气阀机构4种工况下的缸盖表面振动信号诊断实例中,结果表明:该方法不仅改进了传统图像模式识别中的特征参数提取方法,而且能很好地消除时频分布中的交叉干扰项,使各时频分量物理意义明确,能有效诊断出内燃机气阀机构故障,为内燃机振动诊断探索了一条新途径.

故障诊断、内燃机、时频分布、特征提取、双向二维主成分分析

30

TH165+.3;TK428

国家自然科学基金资助项目51405498;中国博士后科学基金资助项目2015M582642;陕西省自然科学基金资助项目2013JQ8023

2017-11-30(万方平台首次上网日期,不代表论文的发表时间)

共9页

688-696

相关文献
评论
暂无封面信息
查看本期封面目录

振动工程学报

1004-4523

32-1349/TB

30

2017,30(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn