基于特征贡献率的机械故障分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16450/j.cnki.issn.1004-6801.2020.03.005

基于特征贡献率的机械故障分类方法

引用
为提高往复压缩机、航空发动机等复杂机械故障分类的准确率,依据特征参数对不同故障的敏感度存在差异的特性,提出一种狄利克雷过程混合模型(Dirichlet process mixture model,简称DPMM)与贝叶斯推断贡献(Bayesian inference contribution,简称BIC)相结合的分析方法.采用DPMM方法自学习机械振动信号高维特征的统计分布模型,并依据BIC理论计算得到各特征参数对模型的贡献率,通过对比观测数据与各类故障数据特征贡献率间的差异实现故障分类.试验结果表明,该方法的平均分类准确率比基于高斯混合模型(Gaussian mixture model,简称GMM)的故障诊断方法的平均分类准确率提高19.29%,比基于Relief算法的故障诊断方法的平均分类准确率提高32.71%,且该方法的时效性高,泛化性能强,能够更有效地进行复杂机械故障分类.

故障诊断、特征贡献率、狄利克雷过程混合模型、贝叶斯推断

40

TH17

国家重点研发计划资助项目2016YFF0203303

2020-07-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

458-464

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

40

2020,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn