变量预测模型在齿轮故障诊断中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1004-6801.2013.z1.026

变量预测模型在齿轮故障诊断中的应用

引用
将基于变量预测模型的模式识别(variable predictive model based class discriminate,简称VPMCD)方法、经验模态分解(empirical mode decomposition,简称EMD)方法和奇异值分解(singular value decomposition,简称SVD)相结合,提出了一种基于EMD,SVD和VPMCD的齿轮故障的诊断方法.首先,对齿轮振动信号进行EMD分解,得到若干个IMF(intrinsic mode function,简称IMF)分量;其次,将包含齿轮主要故障信息的前几个IMF分量组成特征向量矩阵,并对其进行SVD分解;最后,将奇异值作为特征向量建立VPMCD多故障分类器,以此来区分齿轮的工作状态和故障类型.将提出的方法应用于齿轮实验数据,分析结果表明,该方法能够实现齿轮故障类型的分类和诊断,是一种有效可行的齿轮故障诊断方法.

变量预测模型、经验模态分解、奇异值、齿轮、故障诊断

33

TH165.3;TH132.41

国家自然科学基金资助项目51175158,51075131;湖南省自然科学基金资助项目11JJ2026

2013-08-05(万方平台首次上网日期,不代表论文的发表时间)

共4页

111-114

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

33

2013,33(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn