运用EMD和GA-SVM的齿轮故障特征提取与选择
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1004-6801.2009.04.016

运用EMD和GA-SVM的齿轮故障特征提取与选择

引用
针对齿轮故障特征提取,首先将齿轮箱振动信号进行经验模态分解,得到一组固有模态函数.计算各固有模态函数的能量和矩阵的奇异值,采用Shannon熵和Renyi熵度量能量和奇异值分布,构成原始特征子集.再采用遗传算法和最小二乘支持向量机的Wrapper方法选择最优特征子集.该方法能够利用较少的特征参数集准确判别齿轮故障,提高了齿轮故障诊断的精度与效率.

齿轮、故障诊断、经验模态分解、遗传算法、最小二乘支持向量机

29

TH17

2010-03-26(万方平台首次上网日期,不代表论文的发表时间)

共4页

445-448

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

29

2009,29(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn