基于DYCORS算法的OVA-SVM参数优化与应用研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16055/j.issn.1672-058X.2024.0001.005

基于DYCORS算法的OVA-SVM参数优化与应用研究

引用
目的 现有的参数优化方法普遍存在时间成本较大、内存占用较大、难以解决高维数据情况、难以找到全局最优解等问题,DYCORS算法可以在节约时间成本和内存的前提下,对高维数据问题也能找到全局最优解,故针对现有参数优化方法存在的问题,提出了针对OVA-SVM模型参数分块优化的YDYCORS算法.方法 OVA-SVM的参数中对模型影响较大的有惩罚参数C、核函数类型k、RBF核函数参数γ、ploy核函数参数d以及迭代终止参数t,由于同时调节5 个参数计算量较大,难以找到最优解,而DYCORS算法可以减少迭代次数,对于高维数据问题也同样适用,在DYCORS算法的基础上进行参数分块调节:先调节影响最大的参数C、k、γ,再固定最优参数C、k、γ,调节剩余参数中影响较大的参数d和t,最后同时调节已获得的 5 个最优参数,如此对参数进行分块调节,提升参数优化的效果.结果 通过MNIST和IRIS两个数据集上的实验结果对比可以发现:运用YDYCORS算法对OVA-SVM参数进行分块调节后,能得到与手动调参和直接用DYCORS同时调节 5 个参数更高的模型准确率,从而也能进一步提升模型性能.结论 最终实验结果表明:DYCORS算法能有效解决OVA-SVM参数优化中时间成本较大、内存占用较大、难以解决高维数据、难以找到全局最优解等问题,尤其是改进后的YDYCORS 算法能进一步提升OVA-SVM的模型准确率,获得较佳的模型效果.

超参数优化、支持向量机、DYCORS算法

41

O224(运筹学)

2024-01-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

38-44

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

41

2024,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn