10.16055/j.issn.1672-058X.2023.0003.011
基于Vague集模糊熵和D-S证据理论的多属性群决策方法
针对方案属性值为Vague值且考虑专家评分可信度的多属性群决策问题,提出了一种基于Vague集模糊熵和D-S证据理论的多属性群决策分析方法.该方法充分考虑各专家给出的Vague值评价信息中所蕴含的模糊性与不确定性,借助模糊熵来获取与专家自身意见相匹配的评分可信度序列,其完全由数据驱动,弥补了传统方法对可信度主观统一设定的不足.首先,基于各专家原始决策矩阵获得各属性下的Vague集模糊熵,以构建与专家集相对应的评分可信度矩阵;其次,对经可信度调整后的各专家决策矩阵使用证据合成进行信息集结,利用Vague集记分函数并经可信度调整得到属性权重;最后,将专家群体集结信息经属性权重加权修正后算出各方案最终的Vague评价值,进而使用记分函数获得各方案综合得分,筛选出最优方案.利用证据理论在不确定信息融合方面的优势和Vague集记分函数的信息转化功能,通过证据合成和记分函数集结专家群体的评价信息,所得出的决策结果更加客观、合理,并通过一个具体算例验证了所提方法的可行性和有效性.
Vague集、模糊熵、证据理论、多属性群决策、记分函数
40
C934(管理学)
重庆工商大学高层次人才科研启动项目;重庆市社会科学规划博士项目
2023-07-06(万方平台首次上网日期,不代表论文的发表时间)
共7页
78-84