基于预测变量图结构的高维逻辑回归模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16055/j.issn.1672-058X.2021.0005.018

基于预测变量图结构的高维逻辑回归模型

引用
针对高维数据集,提出一种利用预测变量之间的图结构信息来改进稀疏逻辑回归模型的方法.该方法通过利用高维图结构数据或者重叠组结构来进行逻辑回归建模,即使预测变量的图结构未知,该方法仍适用,当图结构为某些特殊形式时,目前流行的方法,如Adaptive Lasso,(Overlapping)Group Lasso和岭回归都可以看作是该模型方法的特例.数值模拟和实例分析应用表明:该方法能有效地利用预测变量图结构信息,提高模型在估计、预测以及变量选择等方面的表现,并且该模型在有限样本情形下是有效的;该模型方法克服了数据集的维数问题,利用高维数据的图结构提高了稀疏逻辑回归模型的性能,可广泛应用于高通量基因数据集的疾病分类研究中.

逻辑回归;高维数据;图结构;Lasso;稀疏性

38

C81(统计方法)

重庆市基础研究;前沿探索专项课题

2021-10-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

107-113

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

38

2021,38(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn